

A new non-invasive method for the diagnosis and prevention of colorectal cancer

DESCRIPTION OF THE TECHNOLOGY

The research group of "Atomic - mass spectroscopy and analytical chemistry under extreme conditions" of the University of Alicante, in collaboration with the General University Hospital of Alicante, has developed a device adapted for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in solid and/or semisolid samples, which consists of the following three elements (Figure 1):

- A headspace adsorptive magnetic extraction device comprising an inert container for depositing the sample. The container comprises a lid and two magnets, one located in the lower part of the lid, which comprises a magnetic sorbent containing a nanomaterial with graphite oxide and iron oxide supported on the magnet, and; another located in the upper part of the lid. This device is configured to be coupled with the next one;
- A thermal desorption system coupled to a gas chromatograph-mass spectrometer that provides a qualitative analysis of VOCs, relating the position of the peaks and their retention time to the identification of VOCs, and quantitative analysis, evaluating and calculating the area of each peak;
- A mass spectrometer that provides qualitative and quantitative analysis of VOCs as a function of the mass to load ratio of VOCs.

The headspace adsorptive magnetic extraction device allows the volatilisation of VOCs from a sample, subjected to a certain temperature. The volatile compounds in the headspace are subsequently retained in an adsorbent trap, which is then desorbed and injected for separation and

The research group of "Atomic - mass spectroscopy and detection by gas chromatography-mass spectrometry.

This apparatus allows the extraction, identification and quantification of VOCs (P-cresol, 1H-indol, 3(4H)-dibenzofuranone or tetrahydrofolate) from stool samples, known as biomarkers in subjects suffering from colorectal cancer (CRC), or in subjects who are predisposed to suffering from CRC, to provide a prognosis of the subject's condition or to provide a negative prognosis.

Therefore, this device can be used as a rapid, effective, selective and non-invasive ex vivo diagnostic method of CRC in a very large number of subjects. To do so, the following steps should be followed:

- I. Obtain a stool sample from the subject;
- II. Extract at least one VOC contained in the sample and identify and quantify the concentration of this VOC with the chromatograph through its retention time and mass spectrum;
- III. To compare the concentration of at least one VOC with the concentration of a reference of the characteristic compound in a non-cancer individual sample, where the increase or decrease in the concentration of the biomarker compared to the reference is indicative that the subject is suffering from, or has a predisposition to, cancer, or provides a negative prognosis of the subject's condition.

A typical chromatogram of a subject's ex vivo sample may contain all four of the biomarker compounds cited, in both CRC and healthy control patients.

MARKET APPLICATION SECTORS

The technology described can be used as a method of diagnosis and prevention of CRC. More specifically, this technology is useful to extract and perform accurate, simple, sensitive and effective analysis of VOCs for application as a non-invasive screening test for CRC.

TECHNICAL ADVANTAGES AND BUSINESS BENEFITS

The main advantages of the technology described are as follows:

- The developed methodology allows a reliable, effective, reproducible and fast analysis of VOCs (biomarker compounds) in solid and/or semi-solid samples.
- It has good sensitivity and selectivity.
- It is a non-invasive ex vivo diagnostic methodology for CRC.
- Useful for a very large number of subjects.
- Environmentally friendly use.
- The sorbent used can be reused after a stage after adequate cleaning, which improves its economic profitability and its use at a commercial level.

CURRENT STATE OF DEVELOPMENT

The technology is developed at laboratory scale and has been used for the diagnosis of CRC in stool samples.

A new non-invasive method for the diagnosis and prevention of colorectal cancer

INTELLECTUAL PROPERTY RIGHTS

This technology is protected by a patent application with title "Apparatus and methods for the diagnosis of colorectal cancer". Application number: P202030487; Application date: 26 May 2020.

COLLABORATION SOUGHT

Companies (mainly, medical diagnostic laboratories and analytical instrumentation companies) interested in acquiring this technology for commercial exploitation through patent license agreements or R&D projects to develop new applications for other types of diagnostics.

RELATED IMAGES

Figure 1. Schematic diagram of the devices used to carry out the analysis, being (1) headspace adsorptive magnetic extraction device; (2) gas chromatograph; (3) mass spectrometer; (4) apparatus for applying temperature and producing magnetic agitation; (5) inert container; (6) solid/semisolid sample; (7) lid; (8) magnet; (9) sorbent supported on the magnet; (10) magnet; (11) glass wool; (12) glass tube.

CONTACT DETAILS

Área de Relaciones con la Empresa Servicio de Transferencia de Resultados de Investigación (OTRI) Universidad de Alicante Teléfono: +34 96 590 9959 Email: <u>areaempresas@ua.es</u> Web: <u>http://innoua.ua.es/</u>